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Fig. 1: We build capability for a humanoid to autonomously loco-manipulate novel objects in novel scenes using onboard
sensors. We achieve this through a modular system powered by large vision models for visual generalization and an accurate
end-effector tracking policy. Our system achieves an 83.8% average success rate at reaching and picking up novel objects in
novel scenes in the real world in challenging scenarios that involve whole-body control via bending, squatting, and twisting.

Abstract—Visual loco-manipulation of arbitrary objects in the
wild with humanoid robots requires accurate end-effector (EE)
control and a generalizable understanding of the scene via visual
inputs (e.g., RGB-D images). Existing approaches are based on
real-world imitation learning and exhibit limited generalization
due to the difficulty in collecting large-scale training datasets.
This paper presents a new paradigm, HERO, for object loco-
manipulation with humanoid robots that combines the strong
generalization and open-vocabulary understanding of large vision
models with strong control performance from simulated training.
We achieve this by designing an accurate residual-aware EE
tracking policy. This EE tracking policy combines classical robotics
with machine learning. It uses a) inverse kinematics to convert

T Equal contributions.

residual end-effector targets into reference trajectories, b) a
learned neural forward model for accurate forward kinematics, c)
goal adjustment, and d) replanning. Together, these innovations
help us cut down the end-effector tracking error by 3.2x. We
use this accurate end-effector tracker to build a modular system
for loco-manipulation, where we use open-vocabulary large vision
models for strong visual generalization. Our system is able to
operate in diverse real-world environments, from offices to coffee
shops, where the robot is able to reliably manipulate various
everyday objects (e.g., mugs, apples, toys) on surfaces ranging
from 43cm to 92cm in height. Systematic modular and end-to-end
tests in simulation and the real world demonstrate the effectiveness
of our proposed design. We believe the advances in this paper
can open up new ways of training humanoid robots to interact
with daily objects.


https://hero-humanoid.github.io/

I. INTRODUCTION

Think about reaching to pick up the objects placed on the
various table tops in Fig. 1. As humans we can reliably and
robustly use our whole bodies to execute such pick ups. We
can use our back to reach over and across the table, or rotate
our torso to pick up objects kept on the side, and use our
legs to squat down to pick up objects kept on coffee tables,
all while maintaining balance on our two legs. We can pick
up seen objects on seen tables, but equally effortlessly also
pick up novel objects on novel tables in novel scenes. Once
we have glanced at the object and scene, we can even do this
with our eyes closed if we want. In this paper, we develop an
autonomous system that equips a humanoid robot with this
fundamental capability: reach over to pick up novel objects in
novel everyday environments around us.

Humanoids are doing backflips [24, 27, 29, 44, 86], so why
would we be writing about such a mundane and seemingly
unimpressive task? There are two key differences that make
our problem of manipulating novel objects harder: the need for
processing the high-dimensional RGB-D image observations
to infer object locations and scene collision geometry, and the
precision necessary for object manipulation. Most existing
humanoid control works aren’t conditioned on perceptual
input from RGB-D camera: either they don’t need any scene
information or scene information is provided as input using
environment sensors (e.g. MOCAP). Second, while back flips
are impressive, it doesn’t really matter where you land, as long
as you land safely. In contrast, if a robot needs to pick up an
object, it needs to get its hand where the object actually is.
Object manipulation requires precise goal-directed behavior.
Operation in novel environments, sensing using on-board
RGB-D sensors, precise EE control, and the complexity of
maintaining balance while moving around, make this problem
challenging.

State-of-the-art for training humanoids for such tasks is
end-to-end imitation learning in the real world [2, 4, 18, 73].
However, difficulty in collecting large datasets for learning
limits generalization capabilities of learned policies. This causes
them to fall short of the goal of manipulating novel objects in
novel environments, which requires broad generalization. In
this paper, we pursue an alternate approach. We take inspiration
from strong results with modular systems for table-top object
manipulation problems [!2, 47, 62]. Vision foundation models
translate high-level instructions into actionable plans (e.g.,
grasp ‘‘the red coke can’’), grasp synthesis models (e.g.,
AnyGrasp [!3]) convert this into grasps, and a low-level control
module conveys the robot EE to the grasp location. Being able
to use large pre-trained models enables broad generalization
and even open-world reasoning. In many ways, this is the more
direct, obvious, and performant way to build such a system.
So, why isn’t such a modular method the go-to method for
building a humanoid object manipulation system?

While it is easy to get a Franka Emika robot to where
you want, it turns out it is extremely difficult for current
methods to accurately control a humanoid hand. Leading

policies for this task achieve approximately 8—13cm error for
end-effector tracking, an error rate that is simply too large
for object manipulation. Our key technical contribution is to
develop an accurate end-effector tracking policy that enables
object manipulation applications. This unlocks the possibility of
developing modular humanoid systems for object manipulation
that generalize without large-scale real-world imitation demos.

So what are the ingredients of building a highly accurate end-
effector tracker? Our accurate end-effector control algorithm
is based on multiple innovations. First, rather than just directly
trying to get the end-effector to the target location, we use a
motion planner to generate an upper-body reference motion
that gets the end-effector to the desired target. Second, the
policy receives as input not just the current and target joint
angles (output using the motion planner), but also the current
and target end-effector position. Third, it is important to obtain
a high-quality estimate of the current end-effector position, as
we found that analytical forward kinematics and odometry on a
low-cost humanoid robot like Unitree G1 are not accurate. We
mitigate this issue by training neural forward models. We train
two models. A neural forward kinematics model maps that
provides an accurate end-effector pose relative to the base. And
a neural odometry model that provides an accurate base pose
relative to the stationary feet. Even after improvements, the
tracker would make systematic errors. We further mitigate these
errors by adjusting the desired target passed into the tracker
based on the current EE pose tracking error, to encourage
the tracker to get where we want it to be. Together, these
innovations improve the state-of-the-art for end-effector. Our
proposed tracker HERO achieves a tracking error of 2.5cm
compared to 813 cm for previous state-of-the-art [39, 94]. In
real-world testing in a MOCAP room, our full system achieves
an average end-effector tracking error of 2.44cm.

Using this performant end-effector tracking policy, we
develop a modular system for picking up open-vocabulary
novel objects in novel everyday environments. This modular
system leverages an open-vocabulary perception module to
detect and segment the target object using large pre-trained
vision models (Grounding DINO 1.5 [48] and SAM-3 [7]).
We next use the AnyGrasp model [!3] to produce parallel jaw
grasps on the candidate object. We retarget them to the Dex3
hand on the Unitree robot. Finally, we use our tracker as a
low-level controller to achieve the grasp pose. In real-world
testing for grasping open-vocabulary object queries in novel
environments, our system achieves a average success rate of
83.8% across more than 25 daily objects, 10 daily and cluttered
scenes kept on diverse table heights.

II. RELATED WORKS
A. Legged Loco-Manipulation

1) Loco-manipulation via motion tracking: Motion tracking
is vital for loco-manipulation, where teleoperation has emerged
as one of the primary paradigms for facilitating imitation learn-
ing [2, 73, 92]. Inspired by DeepMimic-style tracking [57], He
et al. [22, 23], Fu et al. [ 18], and Cheng et al. [10] pioneer this
direction via training motion tracking policy with reinforcement



learning (RL) and sim2real transferring, where remarkable loco-
manipulation results have been obtained on an H1 humanoid

platform [79]. Abundant works have been proposed to improve
whole-body tracking accuracy [206, 32, 39, 54, 60], agility [15,
, 30], generalization [, 42, 51], robustness [+, 94, 96], ob-

ject interaction [84, 97], and reachability [95]. With generated
reference motion, several works have demonstrated success
in humanoid loco-manipulation [40, 55]. In the meanwhile,
teleoperation systems have been rapidly developed, with
which imitation learning has demonstrated remarkable loco-
manipulation reuslts [5, 45, 50, 59, 67, 83, 91, 93].

2) Visual loco-manipulation: One line of research focuses
on imitation learning, where the visual loco-manipulation data
is collected via human teleoperation, and great progress has
been made [2, 18, 21, 22, 73]. Another line of research relies
on reference state-based policy learning. For example, Liu
et al. [40] utilize depth inputs that learn to predict high-level
manipulation commands that control low-level policies. Yin
et al. [87] propose to generate motions from visual depth
inputs, where the robot interacts with objects via tracking
generated motions. Our work lies in this category, where our
system takes the visual input and outputs the EE pose target for
loco-manipulation. More recently, He et al. [25] explores an
end-to-end RL-based loco-manipulation visual policy learning
and demonstrated great success on cylinder-style objects (e.g.,
coke can). However, such methods cannot generalize to open-
vocabulary queries as training assets are rather limited.

B. System Identification

Real-world robots have intrinsic errors due to hardware
inaccuracy. One assumption is that the robot’s joint has
elasticity [16, 71, 72], which makes the joint positions encoded
by motors unreliable. Researcher have proposed to conduct
a system identification to mitigate this sim2real gap [, 34].
To do this, two mainstream methods are used: online and
offline system identification. Online methods aim at learning
to compensate for the hardware and dynamic error during
inference, where an adaptation model is trained to mitigate
possible errors [15, 17, 30, 38, 43, 50, 58, 81, 88-90]. The
other line of research, instead, utilizes the offline collected data
for system identification. For example, ASAP [24] utilizes the
offline collected data for a dynamic adaptation model training,
which enables extremely agile motion tracking. Focusing on
the same direction of optimizing motor dynamics, several
works have been proposed and achieved promising system
identification results [37, 70]. In this work, we propose two
residual models that correct the forward kinematics and robot
base odometry trained on collected MOCAP data, which can
be categorized as an offline system identification method.

III. HERO: HUMANOID END-EFFECTOR CONTROL

Given a desired end-effector pose in the robot frame, the
end-effector control policy outputs motor commands for all
29-DOFs of a G1 humanoid robot [50] to convey the arm
to reach the desired end-effector pose. Note that even the
robot doesn’t need to take any steps, reaching far away targets
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Fig. 2: HERO is an accurate end-effector control frame-
work. Given an EE goal pose, HERO first uses IK to
convert it into an upper-body goal. It then uses motion
planning to generate an upper-body reference trajectory that is
tracked via a learned tracking policy 7, (Sec. III). In addition
to reference joints, 7 also takes accurate estimates of the
residual EE error (obtained via a learned neural forward
model (Sec. III-B, Sec. I1I-B2). HERO also employs periodic
replanning (Sec. III-C) to adapt to drifts and goal adjustment
(Sec. III-D) to mitigate systematic tracking errors. Accurate
tracking enables building modular object manipulation systems
(Sec. IV, Fig. 3).

requires whole-body coordination and balancing (and thus the
control of all DOFs): bending at the waist, twisting the torso,
or bending down the legs. Our innovation lies in the design of
the policy architecture and input/output representations, where
we combine classical robotics components with learned ones
in novel ways. As our experiments will illustrate, a monolithic
learning solution, that directly attempts to learn this mapping,
fails. The overall design of our tracker is shown in Fig. 2.

Given the end-effector target location 7EE in the robot frame,
we first use inverse kinematics to transform it into robot base
height h € R, and upper body joint angles q* € R'7 (3 DoF
waist plus 2 x 7 = 14 DoF left and right arm joints). We
then use a collision-free motion planner [6¢] that takes the
egocentric depth image and robot configurations to compute a
joint trajectory {q;}7_, that conveys the robot arm from the
starting configuration qg to the target configuration q*.

We then use our proposed whole-body end-effector tracking
policy 7 to execute this whole-body reaching motion. 7 is a
learned neural network policy (described in Sec. III-A) that
outputs joint angles commands for position control, where
torque is obtained via a PD controller operating at 50Hz.
¢ itself relies on a learned forward model 7 (described in
Sec. III-B) and a learned base odometry model £ (described
in Sec. III-B2) to map robot configurations to end-effector
poses (rather than forward kinematics, which is significantly
less accurate). There is still a systematic offset in where the
end-effector ends up after m; is executed. We account for
this by systematically shifting the desired end-effector pose
goal in the opposite direction to further improve tracking
accuracy (Sec. III-D). Finally, because m; requires reference
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Fig. 3: Overall architecture for our proposed modular system for open-vocabulary object grasping. Given a free-form
natural language text query indicating which object needs to be picked, we use open-vocabulary large vision models (LVMs

like Grounding DINO [
AnyGrasp model [

] and SAM [7]) to segment out the object of interest and predict parallel jaw grasps (using the
1). We retarget the predicted grasp to a Dex-3 hand. We use our proposed whole-body end-effector tracker

to convey the robot arm to the predicted grasp before picking up the object. By decomposing action planning (i.e. identifying
which object to pick and using what grasp) from action execution (i.e. actual control of the robot), we inherit the strong visual
generalization from pre-trained models as well as strong control capabilities for simulated training of the tracking policy.

poses {q;}7_ as input, we replan to recompute the reference
poses every k steps during execution (Sec. III-C).

A. Whole-body End-Effector Tracking Policy,

To track the target end-effector pose 72¥ € SE(3) defined
in the robot frame, our whole-body EE tracking policy ¢ first
obtains reference trajectory {q;}._; and the corresponding
reference EE pose trajectory {ee;}7_, from a motion planner.
Given the trajectory, the current proprioceptive state s;, and
other commands, the tracking policy predicts the 29-DoF joint
angles that are passed to per-joint PD controllers.

1) Residual-aware end-effector tracking: m output actions
a; at time ¢t as follows:

a = Ty (St, hi,qe, AE:, v, 84541, at—5:t—1) )

where s; is the current proprioception, h; is the reference base
height, q, are the reference upper-body joint angles, vy are
the linear and angular velocity locomotion commands, and
St—5:t—1,¢—5.¢—1 are five time steps of proprioception and
action history. The proprioception include the robot’s joint
angles, joint velocities, angular velocity, projected gravity, and
roll and pitch encoded from the IMU. We don’t use the
IMU yaw as it is inaccurate [22]. A&, represents the residual
pose error between the current and target end-effector pose in
the robot frame, i.e.,

A& = fEE(Xt) © eey, (D

where fFE(x;) maps the arm states x; € R!7 to the end-
effector pose TEE € SE(3), and © is the is the inverse pose
composition operator.!

2) Policy architecture: m; is implemented as two three-
hidden-layer MLPs that decouple whole-body control into
upper- and lower-body actions. Both networks take the same
observation as input and together predict 29-DoF whole-body
actions, obtained by combining the upper-body components
from one MLP with the lower-body components from the other.

'We use @ to denote the pose composition operator: T1 @ To = To Ty
and © is the inverse pose composition operator: T1 © To = T4 L. T;.

3) Training: m is trained in simulation via reinforce-
ment learning with PPO [65]. We utilize both the AMASS
dataset [52] (~8K motion sequences) and a curated set of
typical end-effector targets (~8K) that are encountered in
everyday object reaching. Specifically, we randomly sample
reaching targets with [z, y, z] coordinates defined in robot frame
(z axis is computed from the ground better understanding)
ranging from [0.1m, —0.5m,0.65m] to [0.5m,0.5m, 1.15m],
with the yaw orientation randomly sampled from —60° to 60°.
The reference trajectories are obtained via a motion planner
that outputs the upper-body and end-effector tracking goals.

B. Learned Residual Neural Forward Models

1) Residual neural FK: Our residual neural forward kinemat-
ics function, 7, learns a correction to the output of the analytical
forward kinematic function, FK, to output accurate end-effector
poses. Specifically, given the current proprioceptive state of
one operating arm and waist x; € R19 at timestep ¢ and output
from analytical FK, FK(x;), the final corrected end-effector
pose fEE(x;) is obtained via pose composition:

FPB(x,) = FK(x;) @ (%, FK(x,)).

Note that the analytical forward kinematics function FK(x;)
uses the robot geometry and coordinate transformations to
compute the 6-DoF end-effector pose in the robot base frame.
For precise robots, FK is itself quite accurate, however as our
experiments will show, FK is inaccurate for our humanoid,
necessitating the need for learning a correction.

2) Residual Neural Leg Odometry: Different from fixed-base
object manipulation tasks, where the robot’s base is fixed and
stable, humanoid robots’ base floats in the air for whole-body
balancing during reaching. This movement makes the original
reaching target inaccurate, as the reaching target defined in the
robot frame is no longer the same place where the object lies.
One might consider using the egocentric visual information for
replanning or motion adjustment. However, as shown in Fig. 4,
the egocentric view of the robot is too narrow for the robot to
see the object when the robot’s arm and waist movements are
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Fig. 4: Learned neural forward kinematics model and odometry model. (a) To correct for inaccurate analytical forward
kinematics (FK) that maps joint angles and robot geometry to end-effector poses, we design a residual neural forward kinematics
model (Sec. 11I-B), , that predicts corrections AtFE & ARPEE to the analytical forward kinematics output. (b) As the humanoid’s
base moves around while reaching the object, the object can go out of view due to large whole-body motions, making closed-loop
adjustment from vision infeasible. Thus, it is necessary to accurately estimate base motion. (c) Our residual neural odometry
model accurately estimates base odometry from lower body joint states and by assuming that feet remain fixed (Sec. I1I-B2).

large. As a result, knowing the robot’s odometry, which helps
in adjusting the reaching goal, is critical. We assume the feet
to be static on the ground and use the lower body joint angles
to predict the base pose. By assuming the robot ankle joint as
the root joint and the robot base as the end-effector, we can
compute the base pose using forward kinematics.

However, similar to the error in analytical FK for EE,
analytical FK to compute the base pose is also inaccurate
(see analysis in Sec. V). Similar to our solution for EE, we
adopt a residual model to mitigate these inaccuracies. The only
difference here is that we reason about base pose transformation
relative to time step 0, rather than the absolute base pose.

Concretely, let y; € R be the 6DOF state of the left (or
right) leg motors. We can get analytical base odometry, i.e. base
pose relative to base pose at time step 0, OFX(y;, yo) € SE(3),
using analytical forward kinematics and SE(3) difference:

O™ (y1,y0) = FK(yo) © FK(y3).

Our residual neural leg odometry model & learns the residual:

FoLomey (v vo) = O (y1, y0) @ E(yt, ¥0, O (1, ¥0))-

3) Policy Architecture: 7 is realized using a 3-layer multi-
layer perceptron and outputs the residual transformation
comprising a residual rotation and a residual translation. One
head predicts the residual translation in R3 and another head
predicts the first two columns of the residual rotation as a
vector in RS following [98]. Similar to the n, £ is also a
3-layer MLP that predicts a translation and rotation for the
residual transformation between ground truth and analytical
FK result OfX(y;, yo).

4) Training data and Loss Function: 7 is trained by
collecting data in an MOCAP room using the Optitrack
system [!]. Specifically, we deploy a tracking policy (it
doesn’t have to be an accurate tracking policy) to move
the robot end-effector across the workspace. We collect the
robot state (joint angles) using the motor encoders and the
true end-effector pose using the MOCAP system. We employ
the Kabsch-Umeyama algorithm [33, 78] to transform the
captured MOCAP marker coordinates to the robot’s end-effector
and base pose, which achieves an accurate estimation with
< 1.5mm RMSE error (more details can be found in the
supplementary). In this fashion, we collect a total of 3 hours of
data DFE = {TEE, xt}i\; , that spans the workspace we want
the robot to operate in, we use the first 2 hours of data for
training and the last 1 hour of data for offline validation. £ is
also trained on data captured in a MOCAP room, following the
same protocol: 2 hours of training data and 1 hour of validation
data. As ¢ needs temporal pairs, here we create training data
by sampling pairs of time steps from temporal trajectories.

Given data DEE, and the residual transformation for 7 defined
as AT,FE = TEE © FK(x;), we use a decoupled representation
for AT,FE, where the translation is ATEE € R3, and the orien-
tation ARFE € R is the first two columns of the orientation
transformation matrix [98]. The residual neural FK model, n
is trained using the MSE loss: Lysg (n (xt,FK(xt)),AﬁEE).
Similarly, ¢ utilize the same decoupled continuous representa-
tion and MSE loss Lusg (5 (Ym>¥n, OFK ), A(’)nmg
0 < m < n are two timestamps randomly sampled from
collected temporal sequence.

, where



(c) 10 Daily Objects

(a) General (b) Short

Fig. 5: Novel test environments and novel test objects
used for end-to-end testing of our proposed humanoid open-
vocabulary object grasping system. (a-b) Standard table (0.74m)
and short table (0.56m) setups; note that for short table the
robot would first squat down by 15cm the motion planner
suggested. (c) 10 daily objects with different shapes, physical
properties, appearances, efc (details can be found in Sec. B.7).

C. Replanning

Over the course of execution, the robot may drift sufficiently
far from the reference joint trajectory that the tracking policy
m, is being asked to track. This could lead to poor tracking
performance because of the input being out-of-distribution or
the tracking target simply being too far away. We mitigate this
by replanning the reference motion every k& = 300 time steps
(6 seconds). We replan using the same motion planner [6&] as
before (Sec. III). A replanning at time ¢ updates the remaining
{q¢}¥ and {ee;}T and takes ~20ms.

D. Goal Adjustment

Finally, due to the sim2real mismatch there may still be a
systematic gap between where the policy is commanded to
go to and where the policy ends up at. To eliminate these
systematic errors, we adjust the target in the direction opposite
to the current error to encourage the policy to get to where
we want it to get to. We only modify the A&, that is being
input into the policy. We simply scale up the current error by
a factor of o = 1.6. We only scale up the translation error
vector as we found no benefit from also scaling up the rotation
error. The goal adjustment starts when the EE tracking error
A&, < 0.15m, and stops when the AE; < 0.02m, which helps
stabilize the robot when sufficiently close.

IV. A MODULAR SYSTEM FOR HUMANOID OBJECT
GRASPING

Our overall task of picking up novel open-vocabulary objects
in novel environments. Specifically, given a humanoid robot
that is standing at a table, the goal is for it to pick up objects
described by a free-form natural language query only using its
onboard egocentric sensors.

We design a modular system for this task by building on top
of our HERO tracker from Sec. III. Concretely, we first segment
out the object corresponding to the query using Grounding
DINO [4&]. We next use an AnyGrasp model [|3] to produce
parallel jaw grasps on the candidate object. We filter the

predicted grasps based on how parallel to the table they are.

We retarget the selected grasp to the Dex3 hand on the Unitree

TABLE I: Success rate for the end-to-end open-vocabulary
grasping task on novel objects on general and short tables in
the real world. Our proposed system achieves a 90% success
rate at this task across objects placed at two different heights.

Success Rate

General Table Short Table
Height: 0.74 m  Height: 0.56m

Language Query

red coke can 3/3 3/3
emergency stop button 3/3 3/3
red piranha plant 3/3 3/3
orange cube 3/3 3/3
olive oil bottle 2/3 2/3
game cartridge 2/3 3/3
chip can 2/3 3/3
hand soap bottle 3/3 3/3
robot hand 3/3 2/3
red apple 3/3 2/3
Total 27/30 27/30

robot. Finally, we use our proposed HERO tracker to convey
the robot end-effector to the predicted location.

Specifically, to map parallel gripper grasps to the Dex3
hand, we rotate the AnyGrasp output pose by 45° around the
z-axis, enabling the thumb to form one jaw while the other
two fingers form the opposing jaw. This configuration provides
larger contact areas and better force closure than straight finger
extension, improving grasp robustness and pose error tolerance.
We also clip the end-effector orientation within 70° to ensure
natural full-body motion. Excessive rotations cause twisted
upper-body postures from inverse kinematics, degrading EE
tracking precision.

V. EXPERIMENTS

We design experiments to test the performance of our overall
system as well as the effectiveness of each individual module.
Specifically, we seek answers to the following questions: a)
what matters for building an accurate end-effector tracking
system for humanoids? b) how does the end-effector tracking
performance vary depending on the target reaching location?
¢) what is the extent of error in forward kinematics and can a
learnt model successfully mitigate it? d) to what extent can a
modular system enable a humanoid to manipulate novel objects
in novel environments in the real world?

A. Experimental Setup

All our experiments use an unmodified Unitree G1 Humanoid
robot with Dex-3 hands. We use the inputs from the head-
mounted RGB-D camera (Intel D435i) and proprioception (dof
angles, velocities), and base-mounted IMU for our system.

Experiments involving visual sensing are all conducted
in novel environments on novel objects in the real world.
Experiments that assess the quality of tracking or the accuracy
in forward kinematics are done in a MOCAP room equipped
with 13 Optitrack cameras (more details can be found in
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Fig. 6: Success rate for the end-to-end open-vocabulary grasping task on novel objects in (a) broader and (b) cluttered novel
scenes in the real world. (a) We test HERO in 10 daily scenes on 10 new daily objects, such as office lounge and coffee
shops. HERO achieves an overall 22/30 (73.3%) success rate, demonstrating strong scene generalization capability. Details of
tested locations can be found in Sec. B.8. (b) We also test HERO in 5 random cluttered scenes with different layouts. HERO
achieves an overall 12/15 (80%) success rate, demonstrating the generalization capability in using language as an accurate

proxy for manipulating objects in cluttered scenes.

Sec. B.1). Finally, some design choices are validated in
simulation using Issac Gym [53] and MoJuCo [75].

B. End-to-end System Testing

Our end-to-end system test starts with the humanoid robot
standing 10-20cm in front of tables of varying heights (43cm —
92cm) and the goal for the robot is to pick up an object de-
scribed via natural language. Fig. 5 shows the test objects, and
Tab. I lists the open-vocabulary text queries we experimented
with. The robot needs to operate entirely using its onboard
sensors: the head-mounted RGB-D camera, proprioception, and
a base-mounted IMU sensor. During trials, objects are placed
randomly in the area reachable by the robot. A trial is deemed
successful is the robot is able to pick up the correct object
and lift it off the table for more than 2 seconds. We conduct 3
trials per object per table height.

10 Daily Objects. Tab. I reports the success rate at this end-
to-end test. Across the different open world queries, two table
heights, and objects, our system achieves a success rate of
90%, demonstrating the effectiveness of our modular system
design. This establishes the effectiveness of a modular system
for open-vocabulary object grasping with a humanoid robot,
previously thought impossible for a humanoid robot. It also
serves as the first demonstration of open-vocabulary grasping
capability on humanoid robots operating under whole-body
control.

10 Daily Scenes. Fig. 6(a) plots the success rate on broader
novel daily scenes and objects for a generalization evaluation.
We test our system across various scenes like robot lab and

classroom, and the results show that HERO achieves an overall
73.3% success rate, demonstrating remarkable scene and object
generalization capability.

5 Cluttered Layouts. To further evaluate the open-vocabulary
capability and robustness of our system, we test HERO on
grasping objects from cluttered layouts, shown in Fig. 6(b).
HERO achieves an 80% success rate, which demonstrates
that our open-vocabulary system is language-sensitive and can
reliably grasp objects in such challenging cluttered scenes
without any human demonstration.

C. Forward Kinematics vs. Learned Forward Kinematics

We assess the accuracy of analytical forward kinematics on
the G1 humanoid robot. We conduct this test in a MOCAP
room. We affix tracking markers to the robot base and the robot
end-effector, and use the relative transformation between the
robot base and the robot end-effector as the ground truth. We
execute a reaching policy and record the end-effector positions
(from MOCAP, to use as ground truth) and the corresponding
joint angles. We use the joint angles either with the analytical
forward kinematics or with our learned forward kinematics
model to obtain predicted end-effector poses.

End-Effector Pose. Tab. II reports the translation and orienta-
tion errors between the predicted end-effector poses and the
ground truth poses measured using MOCAP. We average over
60 samples captured in diverse poses in the robot’s workspace.
As we can see, analytical forward kinematics is off by as
much as 1.76cm. At the same time, our learned model is much
better and achieves an error of 0.27cm. The fact that a learned



TABLE II: Inaccuracies in analytical forward Kinematics
and how our learned model mitigates them. a) We report
mean translation and rotation error in the estimate of end-
effector position via different methods. Ground truth comes
from MOCAP measurements. Analytical FK (i.e. using robot
joint angles along with robot geometry) is inaccurate for our
humanoid robot causing a 1.76cm translation error in the end-
effector pose. Our proposed learned residual forward kinematics
model is able to mitigate these errors with a residual design
being more effective. b) Bottom part of the table reports metrics
for base odometry and exhibits the same trends.

Translation Rotation
Method Error (cm)  Error (deg)
a) End-effector Pose
Analytical FK 1.76 5.87
Learned FK (ours) 0.27 2.30
Learned FK, no residual (ours) 0.35 2.98
b) Base Odometry
Analytical FK 1.10 0.49
Learned FK (ours) 0.33 0.36
Learned FK, no residual (ours) 0.37 0.42

model reduces the error by 6 x indicates that analytical forward
kinematics model errors are systematic. Tab. II also reports an
ablation where we directly try to predict the end-effector pose
without using the estimate from analytical FK and note that it
does worse.

Base Odometry. Tab. II also reports base odometry results.
Once again, we see that the residual neural model is better
than both analytical FK and a non-residual neural model.
Execution Curves. We compare analytical and neural forward-
model errors over time in Fig. 7. While analytical FK exhibits a
persistent bias above 1.75 cm during reaching, our neural model
7 remains below 0.25 cm throughout. Similarly, as whole-body
balancing causes analytical odometry drift to grow, our neural
odometry model ¢ reduces this drift by about 3x relative to
the analytical baseline.

D. End-effector Tracking Accuracy Evaluation

We evaluate the performance of different tracking methods
in simulation and in the real world under MOCAP. We evaluate
different tracking methods on a fixed set of 180 reaching goals.
The goal distribution is designed to reflect realistic grasping
scenarios: we sample from three different table heights, with
z-coordinates ranging from 5-15cm above each surface and
x-y positions uniformly distributed across the table workspace.
This yields 60 poses per table height (180 total), capturing
the typical distribution of manipulation targets in everyday
environments.

Metrics. We measure the translation and rotation errors in the
end-effector position as the primary metrics. We report the
mean and std of the errors. We use end-effector position as
measured under MOCAP to compute these metrics. We also
report the joint tracking error for the upper body joints. Here
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Fig. 7: Impact of neural forward models in the real world.
We plot the neural and analytical forward kinematics and base
odometry as a function of execution time steps. The plot shows
1 minute of execution at S0Hz.

TABLE III: End-effector tracking evaluation against prior
methods in simulation (Sec. V-D1). We report end-effector
translation and rotation errors and the upper body joint tracking
error. Across all three table heights, our proposed HERO
tracker achieves the lowest end-effector tracking error as
compared to recent tracking methods FALCON [94] and
AMO [39]. On average, our translation errors are 3.2x lower
than the best baseline.

Method Translation Orientation  Joint Tracking
Error (cm) Error (deg) Error (rad)
General Table (H: 0.74m)
FALCON [94] 11.124+3.58 16.07 £4.00 0.02 +£0.00
AMO [3Y] 8.32 £ 3.41 14.38 £ 5.86 0.02 £0.00
HERO (ours) 2.21 +0.58 10.85+3.95 0.16 £0.03
Tall Table (H: 0.88m)
FALCON [94] 6.80 £ 2.51 13.30 £ 3.02 0.03 £ 0.01
AMO [3Y] 8.46 £4.17 14.04 £5.16 0.02 £0.00
HERO (ours) 3.30+1.91 8.93+3.06 0.20 £0.04
Low Table (H: 0.5m)
FALCON [94] 22.80+£7.15 28.63 £ 8.87 0.02 £0.00
AMO [29] 8.10£3.87 13.12+6.70 0.02 +0.00
HERO (ours) 1.92+0.96 13.92+4.91 0.16 = 0.03
we use measurements from the motor encoders.
Comparisons. We compare against AMO [39] and FAL-

CON [94], two recent tracking methods that report impressive
tracking performance. We retrain both policies on the same
end-effector targets that our policy is trained on. This mitigates
any bias due to a mismatch in training distributions between
the different policies. In addition, we also compare to ablated
versions of our method. Specifically, we ablate the effect of
forward model quality (Sec. III-B and Sec. III-B2), re-planning
(Sec. III-C), and goal adjustment (Sec. III-D).
Results. We discuss the results and our key takeaways.

1) Comparisons against state-of-the-art.: Tab. III reports
the tracking accuracy of HERO against AMO [39] and



TABLE IV: Learned forward models improve end-effector
tracking in the real world (Sec. V-D2). We study the impact
of using different estimates, MOCAP vs. Analytical Forward
Kinematics (FK) vs. our neural model, for end-effector (EE)
pose and base pose. Use of our proposed neural forward models
improves end-effector tracking accuracy over using analytical
forward kinematics and achieves comparable errors to an oracle
version that uses estimates from MOCAP (last row).

EE Base Trans. Error Orient. Error Joint Error
Pose Pose (cm) (deg) (rad)

FK FK 4.67+1.30 14.59+3.99 0.20=+0.03
Ours FK 3.35+£0.70 14.07+3.93 0.19+0.03
FK Ours 3.89+£1.06 14.28+4.75 0.20=+0.04
Ours Ours 2.56+1.23 12.06 +4.38 0.18+0.03

MoCap MoCap 2.44 £0.86 14.29+4.55 0.21 £0.05

TABLE V: Importance of Replanning (Sec. III-C) and
Goal Adjustment (Sec. III-D) in the real world. Both goal
adjustment and replanning lead to improvement in end-effector
tracking accuracy, with replanning being more important. All

methods in this table use accurate end-effector and base pose
from MOCAP.

Trans. Error Orient. Error Joint Error
(cm) (deg) (rad)

w/o Replan 5.174+2.21 16.13+4.66 0.21 £0.03
w/o Goal Adjustment 2.71+0.87 9.38£2.72 0.20+0.03
HERO (full) 244+0.86 8.22+3.52 0.21+0.05

Method

FALCON [Y4] in simulation across 3 different table heights:
0.5m, 0.74m, and 0.88m. HERO obtains a much lower end-
effector translation and rotation error. Average translation error
for HERO is 2.48cm compared to 8.29cm for AMO [39] and
13.57cm for FALCON [94]. Interestingly, HERO has a larger
joint tracking error but a much lower end-effector tracking error.
Unlike baseline methods that optimize purely in joint space,
HERO leverages end-effector shift observations to directly
improve task-space accuracy, demonstrating that minimizing
joint error does not guarantee optimal end-effector positioning.

2) Importance of Accurate Forward Kinematics: Tab. IV
reports control experiments where we replace the end-effector
and base pose to be from analytical forward kinematics or
MOCAP rather than our learned model. Using accurate end-
effector and base pose from our learned models (denoted by
ours) leads to the lowest errors. These errors are to those of
an oracle that uses ground truth estimates from MOCAP (last
row). Using FK instead of our learned model for either the
end-effector or the base leads to worse performance.

3) Importance of Replanning and Goal Adjustment: We
next assess the importance of replanning and goal adjustment
by removing each of these components one at a time. To
maximally isolate the effect of these components, we conduct
this experiment where all methods have access to end-effector
and base pose from MOCAP. As reported in Tab. V, both

components are important with the replanning component being
more important than the goal adjustment component.

Execution Curves. We further analyze how the error evolves
as the execution proceeds with and without replanning in
Fig. 8. The cyan line that doesn’t use replanning plateaus off
at a much higher error, whereas the blue line with replanning
achieves a much lower overall error. In addition, the close
performance of HERO using MOCAP observations and learned
neural forward models demonstrates that our learned forward
models are feasible and accurate. This ensures the possibility of
transferring HERO to anywhere outside the ideal experimental
space using MOCAP, making HERO a useful real-world system.
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Fig. 8: Impact of replanning on end-effector tracking error
in the real world. We plot the end-effector translation error
as a function of execution time steps. The plot shows 1 minute
of execution at S0Hz. The transparent lines are individual 60
real-world rollouts, and the corresponding solid line indicates
the average value. The gray vertical dashlines indicate the
replanning every 6 seconds (0.15Hz). Cyan line shows HERO
without replanning and while purple line shows HERO with re-
planning. Re-planning leads to more accurate tracking. Orange
line uses end-effector estimates from our neural model which
leads to tracking performance very close to the oracle purple
line that uses end-effector estimates from MOCAP.

E. Failure Mode Analysis

Fig. 9 categorizes the observed failures into two distinct
modes, both emphasizing the need for precise end-effector
control. The first mode, object slipping (Fig. 9(a)), arises
when the limited dexterity of the Dex-3 hand fails to secure
large, irregularly shaped objects. The second mode, object
knocked over (Fig. 9(b)), reveals the importance of feasible
grasping orientation and the limitation of the Dex-3 hand that
has simply too large fingers. When interacting with unstable
items like standing books, the margin for error is minimal;
an insufficient hand orientation retargeting during reaching
can trigger a collision. This highlights a stringent accuracy
requirement for an appropriate retargeting strategy that helps
stable and accurate grasping with the clumsy Dex-3 hand.



Fig. 9: Failure mode examples. We identify two main failure
modes: a) object slipping out during grasping, which happens
when grasping large objects with irregular shapes that are
challenging for a Dex-3 hand endowed with limited dexterity;
b) object knocked over during reaching, which happens when
the retargeted hand orientation is not sufficiently large while
the object stands unstably (e.g., a game cartridge or a book
that has a thin ridge).

TABLE VI: Reachable workspace volume across configura-
tions.

Configuration Single Arm (m®) Combined (LUR) (m?)
Arms-only (14 DoFs) 0.166 0.248
Arms+Waist (17 DoFs) 0.426 0.523

the waist’s control to bend and twist the torso, which effectively
repositions the shoulder frame and allows the EE to cover
farther-forward and lower-height targets that are infeasible
with a non-actuated waist.

2) Workspace Showcasing: Fig. 10 illustrates HERO retriev-
ing various objects distributed across an expansive tabletop
workspace. Since every object is positioned beyond 0.4m to
the robot base, the task requires whole-body coordination to
maximize reachability and precision. As shown, HERO enables
the robot to coordinate expressive whole-body motion while
maintaining the necessary precision for successful grasping.

F. Whole Body Reaching Space Analysis

1) Importance of Waist Bending: To quantify how enabling
torso motion via the waist bending affects end-effector reach-
ability, we estimate the EE workspace under two kinematic
settings: i) arms-only, where IK optimizes the 14-DoF arm
joints, and ii) arms+waist, where IK additionally optimizes
the waist DoFs (17 DoFs total). We define an axis-aligned 3D
candidate region in the robot base frame:

r€[0,1.00 m, ye€[-1.0,1.0] m, z€[-0.5,1.0] m (2)

and uniformly discretize it with a grid resolution of 0.02 m.
For each sampled point p, we test feasibility by solving inverse
kinematics with cuRobo [6&] under joint-limit constraints. A
point is marked reachable if the IK solver converges within
a fixed iteration budget and achieves an EE position residual
below a preset tolerance; otherwise, it is marked unreachable.
The reachable workspace volume is approximated via voxel
counting:

V ~ Nyeach - (0.02)?, 3)

where Nyeach denotes the number of reachable grid points.
The results are shown in Tab. VI. Quantitatively, enabling
waist DoFs substantially increases workspace volume. The
combined workspace (LUR) grows from 0.248 m? in the arms-
only setting to 0.523 m® with arms+waist, corresponding to a
~ 2.1x increase. Similarly, the single-arm workspace increases
from 0.166 m> to 0.426 m3. This gain is primarily attributed to
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Fig. 10: HERO enables a humanoid picking up objects
from a standard table (0.74m) across a large workspace
with open-vocabulary queries. (a-c) The robot can reach and
pick up a red apple placed at different heights, poses, and
locations.

VI. LIMITATIONS

This work proposes HERO, which learns to control hu-
manoid end-effectors, with which open-vocabulary visual loco-
manipulation task is targeted. While HERO achieves remark-
able results, we identify the following potential limitations. i)
The egocentric field of view (FoV) under current hardware
setup is rather limited, making it difficult for the humanoid
to see objects farther than 1m or higher than 0.9m. Besides,
as stated in the paper, the humanoid may twist the whole
body a lot, which makes the object disappear from egocentric
vision. One potential is to enable neck DoFs that achieves
active vision and action [01, 93], which enables the robot
to achieve improved closed-loop reasoning from vision. ii)
HERO relies on a classical motion planner [68], which may
lead to extremely twisted motion that is not an optimal or
energy-efficient choice for loco-manipulation. One potential is
to leverage a learning-based prior for trajectory optimization,
which may help unleash more energy-efficient locomotion.
iii) As HERO is a modular system, the limitations of these
systems also apply. For example, the failure may come from
submodules like the LVMs when the operating environment
is too complicated [20, 47]. iv) The current system is limited
in dexterity as we use a Dex-3 hand. With the rapid progress



in tackling the “hand dexterity challenge”, there exists a great
potential to leverage better embodiment for a more dexterous
whole-body dexterous manipulation, which remains a critical
challenge in robotics research.

VII. DISCUSSIONS

We designed a system that enables a humanoid robot to grasp
open-vocabulary novel objects in novel environments. This is
a challenging task as it requires strong visual generalization
(grounding open-vocabulary queries into robot’s egocentric
perception) as well as strong control performance (squatting,
bending, twisting to reach for objects while maintaining
stability). Our system achieves a 90% success rate in the real
world on this challenging task. This was made possible by
adopting a decomposed design that separated action planning
(ingesting RGB-D images to select specified objects and predict
grasps for them) from action execution (actually conveying
the robot to the predicted grasps). The separation enabled the
use of large pre-trained models for action planning, leading
to strong generalization and open-vocabulary capabilities. At
the same time, action execution benefited from large-scale
simulated training. Overall, we demonstrated that there is a
more scalable alternative to the current practice of real world
imitation learning for getting humanoid robots to rearrange
objects.

Along the way, we encountered a number of surprising
findings. It turned out, forward kinematics on a humanoid robot
isn’t accurate and leads to the end-effector pose estimates that
are off by 1.76cm on average. However, the error are systematic.
This enabled the design of a residual neural forward model
that reduced the error to 0.27cm.

Second, even though many recent works produce whole-
body humanoid trackers, it turns out they incur large (8 —
13cm) end-effector tracking errors. This precludes the use of
such trackers for manipulation applications. However, as we
demonstrated, by careful design, particularly one that combines
classical robotics (forward kinematics, inverse kinematics, and
motion planning) with learning, it is possible to build accurate
end-effector tracking policies. Our tracking policies achieve an
end-effector tracking error rate of 2.5cm in the real world.

Finally, we believe that this successful demonstration of a
modular system that enables a humanoid robot to manipulate
objects will unlock the unification of the work on manipula-
tion and humanoid control. Being able to accurately control
humanoid end-effectors would mean that manipulation policies
trained for other platforms (e.g., via UMI [! ], 21]) can be
readily deployed on versatile humanoids.
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A ADDITIONAL EXPERIMENTAL ANALYSIS
A.l1 Language Sensitivity

Fig. 11 shows that our system can correctly interpret lan-
guage to pick up the correct object among relevant distractors.
It picks up the red apple (and not the green one) when told
to pick up the red apple in the top row, and vice versa in the
bottom row.

Fig. 11: HERO is able to distinguish the target object via
language queries. (a) Picking up a red apple; (b) Picking
up a green apple instead of red apple.

A.2  Tracking Error Distribution Analysis

We visualize the CDFs of EE tracking errors in Fig. 12.
Top row. HERO dominates all baselines: at 80%, HERO
achieves 3.9 cm / 6.7° (pos/rot), versus 20.9 cm / 25.3° for
FALCON and 9.8 cm / 19.5° for AMO. At 90%, HERO remains
below 4.6 cm and 8.2°, indicating strong tail robustness.
Bottom row. Replanning (Sec. III-C) is critical: at 80%, HERO
achieves 3.1 cm vs. 6.3 cm without replanning (2.1 x worse),
and at 90% 3.4 cm vs. 7.1 cm. Rotation gains are smaller but
consistent (median 13.6° vs. 16.1°).
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Fig. 12: CDF analysis of end-effector tracking errors. Top
row: Comparison of translation (left) and rotation (right) error
distributions across HERO, FALCON [94], and AMO [39]
for all table heights. The steeper curves of HERO indicate
consistently lower errors and tighter distributions. Bottom row:
Ablation study showing translation (left) and rotation (right)
error distributions with and without replanning (Sec. III-C).
The steeper CDF curves with replanning demonstrate their
significant contribution to tracking accuracy.

A.3  Moving Object Grasping with Visual Replanning

HERO derives target grasping poses from vision and lan-
guage queries, enabling the robot to capture moving objects
through closed-loop replanning. Fig. 13(a-b) illustrates this
dynamic adaptation: while the system initially generates an EE
trajectory based on the first vision perception, it re-estimates
the pose as the object moves. This visual feedback triggers the
update of the target grasp, allowing the robot to seamlessly
adjust its trajectory and successfully secure the moving object.
Note that, in these two trials, the robot successfully sees the
object after moving, but the object can only be seen at the
corner due to the rather limited field of view.

A.4  Extending HERO to Other Tasks Like Door Opening

As HERO constructed a modular system that coordinates
high-level planning and low-level end-effector control, it reveals
a possibility of extending HERO to broader tasks like door
opening, which is a challenging loco-manipulation task [35,

, 85]. In Fig. 14, we directly employ HERO to identify the
target grasping pose for fridge door handle, followed by
the same pipeline as object grasping, enabling the humanoid
to grasp the fridge handle and finally open it when returning
to the default position. Note that the door requires a large
force to open because of magnetic attraction; we leave the

16
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Fig. 13: HERO enables a humanoid to grasp a moving object via visual closed-loop replanning. (a-b) Two examples of
visual closed-loop replanning. The goal is to grasp black can.

(a) RGB-D Input (b) 6DoF Grasp Pose (c) Fridge Door Opening with HERO

Fig. 14: Door opening with HERO. (a) The egocentric RGB-D visual inputs. (b) Given a language query for the door handle
(e.g., ‘‘fridge handle’’ prompted here), our modular system obtains the grasping pose, same as the pipeline for picking up
objects. (c) The robot executes the reaching trajectory and closes the hand when reaching the target poses closely, and then
returns to the default pose with the door opened. Note that while the door is heavy, HERO successfully manages to open the
door with a smooth and stable door motion.

door unlatched beforehand. This result shows HERO’s modular
potential, and it is also possible to extend our system to broader
loco-manipulation tasks by incorporating off-the-shelf trajectory
generation frameworks [20, 28, 31, 62].

A.5 Field of View Analysis

Our system uses the onboard camera for visual perception,
which, however, has a limited field of view. As shown in Fig. 15,
the robot first stands randomly at a distance of 1.28m from
the object, while the target object (stapler) is not visible at
this distance; after walking forward under a consistent velocity i :
command to a distance of 0.6m and continuously detecting — -
the object, the egocentric view successfully captures the target Fig. 15: Filed of view visualization using HERO. We let
object, which makes the robot stops at about 0.5m from the the robot stand at a random distance from the object (e.g.,
object. Then the robot coordinates the whole-body reaching 1.28m), and the robot keeps walking forward until the target
motion and successfully grasps the object. This visualization  object (stapler) is detected. After successfully detecting the
indicates that the robot’s onboard egocentric view is limited, target object, the robot stops walking and grasps the object via
and the robot can only see the object within a short distance  whole-body coordination. The robot can only see the object
(< 0.6m), which makes the availability of the 3D spatial within 0.6m, which makes it hard for the robot to search for
understanding beforehand [¢, 47, 2] critical for searching the object in a random room.
objects, which could be a future exploration.

A.6  Visual Perception Illustration

Fig. 16 illustrates how HERO leverages LVMs to obtain the  Object of Interest from Language. Given an ego-centric RGB-
targeted EE grasping pose, following a modular perception-to- D observation and a natural-language query specifying the
action design that is similar to prior systems [47, 62]. target object, HERO first applies GroundingDINO to produce
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“toy dog’”’

RGB-D Input

Filtered Jaw Grasp Retargeted EE Pose

Fig. 16: HERO visual perception pipeline illustration. (a-d) Examples of ego-centric visual perception using LVMs, including

GroundingDINO [

], SAM-3 [7], and AnyGrasp. Given the language query, GroundingDINO outputs the detection box, which

is input to SAM for the segmentation mask. The mask is used to filter out jaw grasps predicted by AnyGrasp, which is finally
retargeted to the 6-DoF end-effector pose for dexterous grasping with a Dex-3 hand.
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Fig. 17: Visualization of analytical forward kinematics error. We plot the 60 data points collected in the MOCAP room.
The error is indicated in the color bar on the left side of the figure, and the size of the scatter also increases with the error.

a language-conditioned detection box [63]. The detected box
is then used to prompt SAM-3 for segmentation of the object
of interest [7].

Grasp Proposals. This mask serves as a spatial constraint
for grasp proposal generation: HERO runs AnyGrasp [!3]
to produce a set of candidate grasps, and then filters out
proposals outside the segmented object region. Note that

AnyDexGrasp [!4] can also be used here, but we find that the
Dex-3 hand lacks dexterity, and the difference between these
two methods is limited.

Grasp Selection. To select the best jaw grasp, we first filter
out the grasp poses that lie on the opposite side of the object
relative to the robot’s hand (e.g., for an object to the right
side of the hand, the left approaching grasps are abandoned).
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Then we filter out grasps that are too high or too low based
on a gravity-aligned height estimation of objects using depth.
Afterward, we select the grasp that lies most parallel to the
ground with the highest confidence as the final grasp.

Grasp Retargeting. The selected grasp is retargeted to a 6-
DoF end-effector pose for dexterous grasping with the Dex-3
hand. We first rotate the gripper pose by 45 degrees around the
z-axis to improve the grasp robustness and pose error tolerance.
After that, we clip the yaw angle within 70 degrees to ensure
the orientation is not too large.

A.7 Analytical FK Error Visualization

In Fig. 17, we visualize the translation error of analytical
forward kinematic results. We plot the error via the collected
60 samples in the MOCAP room, where the error is recorded
when time is 1 minute. From the figure, we can observe that
the error generally increases when the EE location becomes
larger along the Y and Z axes, which may form a pattern that
can be learned from a neural model.

B ADDITIONAL IMPLEMENTATION DETAILS
B.I MOCAP Setup

MOCAP System. We use the modern MOCAP system
Optitrack [!] with 13 cameras which provides < 0.2mm
measure accuracy.

Robot Link Pose. To obtain the end-effector pose in the robot
frame, we put several markers onto both links, and we show
markers on the hand in Fig. 18(a). Although the MOCAP
system provides constructed asset poses via selected marker
groups, there exists a misalignment between the MOCAP asset
frame and the robot link frame. To address this, we carefully
measure each marker’s relative offset to the link’s origin,
followed by the Kabsch-Umeyama (KU) algorithm [ ]
that transforms individual marker coordinates into 6-DoF link
pose in the MOCAP frame within < 1.5mm RMSE error.
The relative transformation of EE and the robot base is thus
obtained as they are all in the MOCAP frame. This approach
ensures an accurate measurement of both the end-effector and
the robot base, setting a solid ground for our evaluation and
camera calibration, introduced next.

)

B.2  Onboard Egocentric RGB-D Camera

Setup. We use the onboard RGB-D camera D435i mounted on
the humanoid’s head, as shown in Fig. 18(b). The humanoid’s
neck features a pitch degree of freedom enabling head rotation
within a limited range, necessitating precise camera calibration
for accurate 3D perception.
Calibration with MOCAP. Standard hand-eye calibration [60,

] typically relies on analytical forward kinematics to obtain
end-effector poses. However, as demonstrated in the main
paper (Sec. V-C), analytical forward kinematics exhibits
systematic errors of approximately 1.8cm due to hardware
inaccuracies—unsuitable for precise camera calibration.

We instead leverage the MOCAP system for ground-truth
pose measurement. Following the marker-based approach
described previously, we attach reflective markers to an ArUco
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(d) MOCAP Markers on
ArUco Calibration Board

(b) D435i on G1's Head

i Al |

(a) MOCAP Markers on Dex-3 Hand (c) Non-Motor Neck Pitch DoF

(e) Calibration Example

Fig. 18: MOCAP markers, camera, and calibration setups.
(a) We put several MOCAP markers on both the robot’s end-
effector and robot’s base (similar to the EE), and each marker’s
relative location to the link’s base is measured carefully. By
employing the Kabsch-Umeyama algorithm [33, 78], we are
able to accurately obtain the robot’s link’s coordinate in the
MOCAP frame from each marker’s individual coordinates in the
MOCAP frame with < 1.5mm RMSE error. (b) The onboard
D435i camera mounted on the Unitree G1 humanoid robot’s
head. (c) While no motor is set, there is a neck pitch DoF that
allows the head to rotate along the y axis via external physical
force, making the manufacturer-provided camera parameters far
from the real setup. (d) Similar to EE and base, we put several
MOCAP markers on a standard ArUco calibration board [19]
to obtain an accurate relative transformation of the calibration
board to the robot base. (e) Our calibration requires one person
to hold the board in front of the camera to collect different
board poses in the robot frame.

calibration board [19] and apply the KU algorithm [33, 78] for
6-DoF pose estimation. During data collection, we manually
move the board through 60-70 diverse poses in front of the
camera. For each pose 7, we record: 1) the robot base pose in
MOCAP frame Tyoeap, 2) the board pose in MOCAP frame

_ MOCAP> :
Tl\],j[%dgk;, and 3) the board pose in camera frame Tomos® via
ArUco detection using the OpenCV library [6].

To compute the camera-to-base transformation 7,727, we
solve the eye-to-hand calibration problem:
camera oard,i __ ~base oard,?
o™ @ Tovomes’ = Trioear © Triocar )

using the Tsai-Lenz method [76, 77]. This MOCAP-assisted
calibration achieves a reprojection error within 2.5mm, ensuring
accurate egocentric 3D perception.

Image Resolution & FPS. We use the RGB-D images with a
resolution of 640 x 480 in a 60Hz FPS.

B.3  Hyper-parameters

Motion planning For motion planning, we use cuRobo and
set the planning dt to 7.25e-6.

Grasping Threshold When the robot approaches the object,
it autonomously close the hand when the hand distance to
the target grasp AE; < § where § > 0 is a threshold. At
the moment when this threshold is reached, we pass the same



local waypoint of the planned motion trajectory to the policy
to ensure stability, and the hand is immediately closed for
grasping. In this paper, we utilize a threshold of § = 1.5cm,
which we find most effective across tested objects.

B.4 Rewards

Tab. VII summarizes reward components and weights used
for RL training of 7, which is structured into four categories:
tracking task, penalties, regularization, and locomotion task.
To ensure precise manipulation, the tracking rewards weigh
the alignment of the end-effector based on our newly proposed
residual AE;. Note that EE orientation is represented with
the continuous 6D parameterization (first two columns of the
rotation matrix) [98]. To encourage the planned upper-body
posture (e.g., waist bending or torso twisting), we also add
a joint-space tracking term. Penalties strictly enforce safety
constraints (e.g., joint limits, termination), while regularization
terms—such as costs on torque, acceleration, and stance
symmetry—are essential for generating smooth, stable motions
capable of robust and natural Sim2Real transfer. To train the
robot to follow locomotion commands, we also use a flag
variable to control the standing and waking mode switching.

B.5 Policy Training

Simulation & Training Setup. We train our end-effector
tracking policy 7 with the IsaacGym simulator [53], and
transfer this policy to the MuJoco simulator [75] for Sim2Sim
evaluations before deploying it in the real world. We train our
policy with 4,096 environments for overall 20K iterations in
parallel, with a learning rate of le-4 for both the actor and
critic models. AdamW optimizer [4°] is used with a weight
decay of le-2. We use a high simulation frequency of 500Hz,
with the low-level PD controller running at SOHz. All the policy
training is conducted on a single NVIDIA RTX 4090 or an
L40S GPU.

Sim2Real Domain Randomization. Following previous
works [22, ], we employ standard domain and dynamics
randomization to facilitate Sim2Real transfer [/4], including
variations in link center of mass (CoM) and control delay.
Notably, we identify that randomizing the end-effector mass
is essential; without this specific randomization, the policy
exhibits end-effector instability, leading to high-frequency hand
oscillations that compromise tracking accuracy.

s

B.6 Deployment Hardware

We run all modules (e.g., m¢ and SAM-3 [7]) off-the-
shelf on a 32-GB RAM laptop equipped with NVIDIA RTX
5070Ti GPU and Intel Core Ultra 9 275HX CPU processor
(24 CPU cores / 24 threads). We run cuRobo with CUDA
graph acceleration, which largely improve the efficiency on
the edge [6¢]. For the detection module, we have tested both
Grounding DINO base [48] and Grounding DINO 1.5 [67],
where the base version can be deployed on the laptop, and
Grounding DINO 1.5 only provides access through online APIs.
However, we find that Grounding DINO base is sufficient for
most scenes and objects.
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TABLE VII: Reward components and weights. Penalty
rewards prevent unreasonable behaviors for sim2real transfer,
regularization helps improve motion smoothness and stability,
and task rewards ensure successful and precise end-effector
and upper-body tracking.

TERM EXPRESSION WEIGHT
Tracking Task Rewards:
End-effector exp exp(—||AEL?) 2.0
Upper-body DoF exp exp(—||qiPPer ReD _ gupper) 2y 4.0
Base height exp exp(—||hbse — pbase Reh))|2) 4.0
Penalty:
DoF position limits 1(q; & [@mins Tmax)) -5.0
DoF velocity limits 1(d; € [min> Imax)) 5.0
Termination Liermination -250
Regularization:
End-effector linear velocity lvisll -0.2
End-effector angular velocity llwZs -0.02
DoF acceleration ldell2 -2.5e-7
DoF velocity (AL -le-3
Action rate lat]3 0.1
Torque [Tl -le-5
Angular velocity [lw?| -0.05
Base velocity llv2]l 20
1 — cos Opage
Base orientation cos _ base g target 1.5
“OS Upase = thmcHHgmrgclH
— 08 Brorso
Torso orientation P _ orso _ starget 1.0
COS Gtorso .—h |g‘°’5°H||g""ge'||_ \
left ___right left ,right
Stance symmetry > (}qs % + ‘q"‘ "‘!‘Qa‘ D 0.5
s: sagittal joints, a: anti-sagittal joints
left right
Ankle roll Z (|q::11ile.mll‘ + ‘qankle,roll ) 2.0
ﬂ(ncomacl < 2)
Feet contact -4.0
+ ]l(nconlucl = 2V ncontact = 0)
. . ight f
Feet orientation Hg}fyﬁ foot|| 4 || gh¥ oot 2.0
Negative knee DoFs > 1 (gknee < anee,min) -1.0
Feet spread distance Il(Hp}fy““"" — p‘;'ygm 0 | < dipresh) -10.0
Walkings Task Rewards:
Linear Velocity v, exp(—(vemd — pbase)2 /) 2.0
Linear Velocity vy exp(—(vi™ — vf¥°)2 /5) 1.5
Angular Velocity exp(—(wsmd — wWhase)2 /) 4.0

B.7 Testing Assets Details

In the paper, we have tested HERO with 20 daily objects;
these objects have different sizes and weights, while being
made with different materials, making it challenging to grasp
with a Dex-3 hand. We list the detailed sizes, weights, materials,
and language queries of all objects tested in Tab. VIII. Note
that the size is roughly measured as the shape is irregular and
cannot be easily described.

B.8 Testing Scenes Details

Tab. IX lists the details of the novel scenes tested in this
paper, which are mainly chosen from the Coordinated Science
Laboratory Studio (CSL Studio) and the Thomas M. Siebel
Center for Computer Science at the University of Illinois
Urbana-Champaign, Urbana, IL. The snapshot of these testing
scenes can be found in Fig. 6.



TABLE VIII: Testing objects, sizes, weights, materials, and language queries. Sizes are roughly measured due to irregular
shapes. Weights are measured with an accurate food scale.

Object Size Weight Material Language Query

10 daily object evaluation.

' 4.9%x4.9x4.9cm 58.06¢ Wood orange cube
g 12x6x6 cm 1497 ¢ Aluminum coke can
6 8.5x7.5x7.5cm 15.88¢ Plastic red apple
g 9I%x5x5cm 137.89¢ Plastic & Metal emergency stop button
‘ 15x6x5cm 239.95¢g Plastic & Metal robot hand
@ 16.5%x10.5x3.3cm 185.07¢g Plastic game cartridge
e 27.5%9.5%x9.5cm 79.83¢g Plastic olive oil bottle
—
16x8.5x8.5cm 39281¢g Plastic & Liquid hand soap
-
v 23x7.9%x7.9cm 43.09g Paperboard & Plastic chip can
3
‘ 17x11x11 cm 7394 ¢ Plush red piranha plant

10 daily objects used in 10 daily scenes evaluation.

& 21x12x43cm 21591g Plastic kettle

;." 16.5x11x21cm 213.19¢g Plush toy dog

a 17.2x9%x9cm 2495¢ Paperboard & Plastic Starbucks coffee
p 11.5%9.4x9.4cm 526.17¢g Ceramic orange mug

N U

' 18.5%6.3%x6.3cm 286.22 ¢ Plastic & Metal water bottle

e Tx7.7x7.7cm 1497 ¢ Plastic green apple

Continued on next page
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Object Size Weight Material Language Query
v 18.8%2.4x13.3cm 301.19¢g Paper purple book
\A 14x8%x39cm 23496 ¢ Plastic & Metal helicopter
@ 8x5.6x10cm 36741¢g Metal & Spam spam
g

g 19x5x5cm 86.18 ¢ Plastic & Liquid cleaner bottle
Additional objects.

‘ 24.5x8x6.5cm 135.17¢g Plush carrot

? 23x8x8cm 307.08 ¢ Plush broccoli

. 7.5%7.2x7.5cm 19.05¢ Plastic orange

g 21x2.3%x13.8cm 376.03 g Paper book

i 15.3%x6.5x6.5cm 18.14 g Aluminum black can
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TABLE IX: Testing scenes, table heights, language queries. Here we list the novel scenes chosen in this paper for evaluation,
and the corresponding table height. The snapshot of these scenes can be found in Fig. 6.

Scene Location Table Height Language Query
corridor CSL Studio @ UIUC 0.43m kettle
office lounge CSL Studio @ UIUC 0.48m toy dog
building café Thomas M. Siebel Center for Computer Science @ 0.72m Starbucks coffee
ulucC
office CSL Studio @ UIUC 0.74m orange mug
building Thomas M. Siebel Center for Computer Science @ 0.74m water bottle
lounge uUIucC
office CSL Studio @ UIUC 0.74m green apple
kitchenette

building den Thomas M. Siebel Center for Computer Science (RM 0.74m purple book
3333) @ UIUC

robotics lab  CSL Studio @ UIUC 0.86m helicopter
office kitchen CSL Studio @ UIUC 0.87m spam
classroom  Thomas M. Siebel Center for Computer Science (RM 0.92m cleaner bottle

1302) @ UIUC
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